Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139422

RESUMO

Spinal cord injury (SCI) is a serious medical condition associated with severe morbidities and disability. Chronic SCI patients present an enhanced susceptibility to infections and comorbidities with inflammatory pathogenesis. Chronic SCI appears to be associated with a systemic dysfunction of the immune system. We investigated the alteration of the pivotal CD4+ and CD8+ T lymphocytes in patients with chronic SCI at different years of evolution. A clinically homogenous population of 105 patients with chronic SCI (31 with time of evolution less than 5 years (SCI SP); 32 early chronic (SCI ECP) with time of evolution between 5 and 15 years; and 42 late chronic (SCI LCP) with time of evolution more than 15 years) and 38 healthy controls were enrolled. SCI ECP and SCI LCP patients showed significant CD4+ and CD8+ T lymphopenia, ascribed to a reduction in naïve and CM subsets. Furthermore, SCI ECP and SCI LCP patients showed a significant reduction in the expression of CD28 on CD8+ T lymphocytes. The expression of CCR6 by CD4+ T lymphocytes was decreased during the evolution of chronic SCI, but on CD8+ T lymphocytes, it was observed during the first 15 years of evolution. In conclusion, the chronic SCI course with severe damage to T lymphocytes mainly worsens over the years of disease evolution.


Assuntos
Linfócitos T CD8-Positivos , Traumatismos da Medula Espinal , Humanos , Linfócitos T CD4-Positivos , Traumatismos da Medula Espinal/metabolismo , Ativação Linfocitária
2.
Mil Med Res ; 10(1): 26, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291666

RESUMO

Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108209

RESUMO

Spinal cord injury (SCI) is a disabling neurological condition coursing with serious multisystem affections and morbidities. Changes in immune cell compartments have been consistently reported in previous works, representing a critical point of study for understanding the pathophysiology and progression of SCI from acute to chronic stages. Some relevant variations in circulating T cells have been noticed in patients with chronic SCI, although the number, distribution, and function of these populations remain to be fully elucidated. Likewise, the characterization of specific T cell subpopulations and their related cytokine production can aid in understanding the immunopathological role of T cells in SCI progression. In this sense, the objective of the present study was to analyze and quantify the total number of different cytokine-producers T cells in the serum of patients with chronic SCI (n = 105) in comparison to healthy controls (n = 38) by polychromatic flow cytometry. Having this goal, we studied CD4 and CD8 lymphocytes as well as naïve, effector, and effector/central memory subpopulations. SCI patients were classified according to the duration of the lesion in chronic SCI with a short period of evolution (SCI-SP) (comprised between 1 and 5 years since initial injury), early chronic phase (SCI-ECP) (between 5 and 15 years since initial injury) and late-chronic phase (SCI-LCP) (>15 years since initial injury). Our results show that patients with chronic SCI exhibited an altered immune profile of cytokine-producer T cells, including CD4/CD8 naïve, effector, and memory subpopulations in comparison to HC. In particular, IL-10 and IL-9 production seems to be importantly altered, especially in patients with SCI-LCP, whereas changes in IL-17, TNF-α, and IFN-γ T cell populations have also been reported in this and other chronic SCI groups. In conclusion, our study demonstrates an altered profile of cytokine-producer T cells in patients with chronic SCI, with marked changes throughout the course of the disease. In more detail, we have observed significant variations in cytokine production by circulating naive, effector, and effector/central memory CD4 and CD8 T cells. Future studies should be directed to explore the possible clinical consequences of these changes or develop additional translational approaches in these groups of patients.


Assuntos
Linfócitos T CD4-Positivos , Traumatismos da Medula Espinal , Humanos , Citocinas , Linfócitos T CD8-Positivos , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa
4.
J Pers Med ; 13(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37109013

RESUMO

BACKGROUND: Oxidative stress is a major signature of spinal cord injury (SCI). The altered levels of various oxidative stress markers have been demonstrated in acute and chronic SCI. However, the variation of these markers in patients with chronic SCI depending on the time since the initial injury has not been explored yet. OBJECTIVE: Our aim was to measure plasma levels of malondialdehyde (MDA), a marker of lipid peroxidation in patients with SCI stratified in different periods of suffering the injury (0-5 years, 5-10 years, and more than 10 years). PATIENTS AND METHODS: This cross-sectional study enrolled patients with SCI (N = 105) from different periods of the lesion and healthy control (HC) subjects (N = 38): short period (SCI SP, N = 31, time of evolution less than 5 years); early chronic (SCI ECP, N = 32, time of evolution 5-15 years); and late chronic (SCI LCP, N = 42, time of evolution more than 15 years). The plasma levels of MDA were measured using a commercially available colorimetric assay. RESULTS: Patients with SCI had significantly higher plasma levels of MDA than HC subjects. Receiver operating characteristic (ROC) curve analysis for plasma MDA levels in patients with SCI demonstrated areas under the curve (AUC) of 1 (HC vs. SCI-SP); 0.998 (HC vs. SCI-ECP); and 0.964 (HC vs. SCI-LCP). Additionally, three ROC curves were used to compare the different concentrations of MDA between the subgroups of patients with SCI, and the resulting AUCs were: 0.896 (SCI-SP vs. SCI-ECP); 0.840 (SCI-ECP vs. SCI-LCP); and 0.979 (SCI-SP vs. SCI-LCP). CONCLUSION: Plasma concentration of MDA can be considered as an oxidative stress biomarker to assess the prognosis of SCI in chronic stages.

5.
Biology (Basel) ; 12(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37106817

RESUMO

Spinal cord injury (SCI) is a progressive and complex neurological disorder accompanied by multiple systemic challenges. Peripheral immune dysfunction is a major event occurring after SCI, especially in its chronic phase. Previous works have demonstrated significant changes in different circulating immune compartments, including in T cells. However, the precise characterization of these cells remains to be fully unraveled, particularly when considering important variants such as the time since the initial injury. In the present work, we aimed to study the level of circulating regulatory T cells (Tregs) in SCI patients depending on the duration of evolution. For this purpose, we studied and characterized peripheral Tregs from 105 patients with chronic SCI using flow cytometry, with patients classified into three major groups depending on the time since initial injury: short period chronic (SCI-SP, <5 years since initial injury); early chronic (SCI-ECP, from 5-15 years post-injury) and late chronic SCI (SCI-LCP, more than 15 years post-injury. Our results show that both the SCI-ECP and SCI-LCP groups appeared to present increased proportions of CD4+ CD25+/low Foxp3+ Tregs in comparison to healthy subjects, whereas a decreased number of these cells expressing CCR5 was observed in SCI-SP, SCI-ECP, and SCI-LCP patients. Furthermore, an increased number of CD4+ CD25+/high/low Foxp3 with negative expression of CD45RA and CCR7 was observed in SCI-LCP patients when compared to the SCI-ECP group. Taken together, these results deepen our understanding of the immune dysfunction reported in chronic SCI patients and how the time since initial injury may drive this dysregulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...